|
y

'
A

Freescale Semiconductor
Application Note

AN2973
Rev. 0, 04/2006

Using the ACIM Vector Control

eTPU Function

Covers the MCF523x, MPC5500, and all eTPU-Equipped

Devices

by: Milan Brejl
System Application Engineer, Roznov Czech System Center
Michal Princ
System Application Engineer, Roznov Czech System Center

1 Introduction

The AC induction motor vector control (ACIMVC)
enhanced time processor unit (eTPU) function is one of
the functions included in the AC motor control eTPU
function set (set4). This eTPU application note is
intended to provide simple C interface routines to the
ACIMVC eTPU function. The routines are targeted at
the MCF523x and MPC5500 families of devices, but
they can easily be used with any device that has an
eTPU.

2 Theory

Vector control is an elegant control method of control-
ling the AC induction motor (ACIM), where field ori-
ented theory 1s used to control space vectors of magnetic
flux, current, and voltage. It is possible to set up the
co-ordinate system to decompose the vectors into a elec-
tro-magnetic field generating part and a torque generat-
ing part. Then the structure of the motor controller

© Freescale Semiconductor, Inc., 2006. All rights reserved.

NO O WN =

Table of Contents

INtroduCtion......cooo v 1
TREOIY .. 1
Function OVErview..........cccveveeeiciiieeee e 4
Function Description..........cccccviiveeeiiieie, 5
C Level API for Function..........ccccceeiiiieiiniennen. 14
Example Use of Functionccccecovineinnnenn. 24
Summary and Conclusionscccoeerveeneeenne. 28
freescale”

semiconductor

Theory

(vector control controller) is almost the same as for a separately excited DC motor, which simplifies the
control of ACIM. This vector control technique was developed in the past especially to achieve similar
excellent dynamic performance of ACIM.

As explained in Figure 1, the choice has been made of a widely used current control with an inner posi-
tion closed loop. In this method, the decomposition of the field generating part and the torque generating
part of the stator current allows separate control of the magnetic flux and the torque. To do so, we need to
set up the rotary co-ordinate system connected to the rotor magnetic field. This co-ordinate system is gen-
erally called the ‘d-q reference co-ordinate system.” All transformations needed for vector control are
described here.

2.1 Mathematical Model of ACIM Control

For a description of the ACIM, the symmetrical three-phase smooth-air-gap machine with sinusoidally
distributed windings is considered. Then the voltage equations of stator in the instantaneous form can be
expressed as:

. d

usy = Rgigy +5\PSA Eqn. 1
. d

Ugp = R5153+5‘P53 Eqn. 2
. d

Ugc = RSlSCJ'_a\PSC Eqn. 3

where ugy, ugp and ugc are the instantaneous values of stator voltages, ig,, igp and igc are the instanta-

neous values of stator currents, and ¥y, ¥, and ¥ are instantaneous values of stator flux linkages in

phase A, B, and C.
Due to the large number of equations in the instantaneous form of Eqn. 1, Eqn. 2 and Eqn. 3, it is more
practical to rewrite the instantaneous equations using two axis theory (Clark transformation). The ACIM

can then be expressed using the following equations:
» The stator voltage differential equations

Ugq = Rslsy +%‘P5a Eqn. 4
Usg = RSiSBJr%\PSB Eqn. 5
» The rotor voltage differential equations
Upy, = 0 = Ryip, +%‘I’Ra+ Gh ' Eqn. 6
ugg = 0 = Rpigg +%‘I‘RB—(0‘PRQ Eqn. 7

» The stator and rotor flux linkages expressed in terms of the stator and rotor current space vectors

W, = Lgigy T L,igg Eqn. 8
\IJSB = LSISB +LmiRB Eqn. 9
\PR(x - LRiR(x+LmiSa Eqn' 10

Using the ACIM Vector Control eTPU Function, Rev. 0

2 Freescale Semiconductor

» Electromagnetic torque expressed by utilizing space vector quantities

where: o,p=
Z’lSoc,B:
iSoc,Bz
uRoc,Bz

Wrp = Lpigp+ Lyisp

t, = %Pp(‘{’s(xisgz - Wpisa)
Stator orthogonal coordinate system
Stator voltages
Stator currents
Rotor voltages
Rotor currents
Stator magnetic fluxes
Rotor magnetic fluxes
Stator phase resistance
Rotor phase resistance
Stator phase inductance
Rotor phase inductance

Mutual (stator to rotor) inductance

Electrical rotor speed / synchronous speed

Number of pole pairs

Electromagnetic torque

[V]
[A]
[V]
[A]
[Vs]
[Vs]
[Ohm]
[Ohm]
[H]
[H]
[H]
[rad/s]
[-]
[Nm]

Theory

Eqn.

Eqn.

11

12

Equations Eqn. 4 through Eqn. 12 represent the model of a ACIM in the stationary frame a., B fixed to the
stator. The main purpose of the vector control is to decompose the vectors into a magnetic field generating
part and a torque generating part. To do so, it is necessary to set up a rotary co-ordinate system attached to
the rotor magnetic field. This coordinate system is generally called the ‘d-q-co-ordinate system.” Thus the
equations Eqn. 4 through Eqn. 12 can be rewritten as:

. d
Usgy = Rgigy+ E\Psfl -o,Yg,

Ug, = Rgig,+—

Wsa = Lsisat Lyiga
= LSiSq+Lmqu
Wra = Lpigat Lyisq
lPRq = LRqu+L

mlSq

3 . .
le = Epp(lPSdlSq = Wgyisa)

Using the ACIM Vector Control eTPU Function, Rev. 0

Eqn.
Eqn.
Eqgn.
Eqgn.
Eqn.
Eqn.
Eqn.
Eqn.

Eqn.

13

14

15

16

17

18

19

20

21

Freescale Semiconductor

Function Overview

3 Function Overview

The purpose of the ACIMVC function is to perform the current control loop of a field-oriented (vector

control) drive of a ACIM.

The sequence of ACIMVC calculations consists of these steps:
1. Forward Clarke Transformation

2. Rotor flux Estimation

DQ establishment (including calculation of sine, cos, omega field, and Forward Park
transformation)

D&Q current controllers calculation

Decoupling

Circle limitation

Inverse Park transformation

DC-bus ripple elimination

The ACIMVC calculates applied voltage vector components alpha and beta based on measured phase
currents and required values of phase currents in 2-phase orthogonal rotating reference frame (D-Q). The
ACIMVC function optionally enables to perform the limitation of calculated D and Q components of the
stator voltages into the circle.

The ACIMVC does not generate any drive signal, and can be executed even on an eTPU channel not con-
nected to an output pin. If connected to an output pin, the ACIMVC function turns the pin high and low,
so that the high-time identifies the period of time in which the ACIMVC execution is active. In this way,
the ACIMVC function, as with many of the motor-control eTPU functions, supports checking eTPU tim-
ing using an oscilloscope.

© =N w»n ok

ACIMVC e
i_q_required u q lin o
—_—— u_d x u_alpha | ac alpha
. L g L g g » 9_9 »
i_d_required ; o L= S Xy
_d_req ' m u_d_lin 2 ° .(:w o ‘*g @ £
'y La g OE u_q © & | ubeta m £ beta
id @ o
» 0O A A
. (2]
omega_ﬂeld; 8| &
o omega_actual
, u_alpha
bl
i _ U_beta
i T i Iph o
sin " ‘PSI_r_aP a § 8 ‘i_alpha . i_a
cos C | _psi_r_beta =0 [« £ |«
O < L= | ibeta 25 ib
omega_field o E N © E < .
E-E e S Of —-°
id © | i_alpha =
-
iq u"j i_beta
-

Figure 1. Functionality of ACIMVC

Using the ACIM Vector Control eTPU Function, Rev. 0

4 Freescale Semiconductor

Function Description

4 Function Description

The ACIMVC eTPU function performs the calculations of the vector control current loop in the following
order:

¢ Calculates Forward Clark Transformation.

The Forward Clark Transformation transforms a three-phase system into a two-phase orthogonal
system.

Pa

phase -b

phase-c

Figure 2. Clark Transformation

In most cases, the 3-phase system is symmetrical, which means that the sum of the phase quantities
is always zero. To transfer the graphical representation into mathematical language:

%‘% _% . 1 0 0 |[a
4 = =| atb+c=0 | = 11 Eqn. 22
5 R 1 1[b

R bl

The ACIMVC uses the Clark Transformation to transform the phase currents:
i alpha=i a
i beta = 1/sqrt(3) xi_b- 1/sqrt(3) xi_c = 1/sqrt(3) x(i_ b-i c)
* Estimates Rotor Flux.

Knowledge of the rotor flux space vector magnitude and position is key information for the AC
induction motor vector control. With the rotor magnetic flux space vector, the rotational coordinate
system (d-q) can be established. There are several methods for obtaining the rotor magnetic flux
space vector. The implemented flux model utilizes monitored rotor speed and stator voltages and
currents. It is calculated in the stationary reference frame (o, 3) attached to the stator. The error in
the calculated value of the rotor flux, influenced by the changes in temperature, is negligible for
this rotor flux model.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 5

Function Description

The flux model calculates the two axis components of the rotor magnetic flux (¥) in alpha, beta
stationary reference frame. The flux calculation is based on the AC induction motor mathematical
model. The function solves the system of two differential equations:

d¥p, L dig,

[(1-0)Tg+ Tkl ~ R_i:us‘* Wra =Py ¥ pp— 0L, Ts—= Eqn. 23
[(1-0)T +T]%= Loy +p 0TV e, — oL r 2st Eqn. 24
S R dt RS SB RpB 7 R * Ra m* S dt
where
Lo Self-inductance of the stator [H]
Lg- Self-inductance of the rotor [H]
L,- Magnetizing inductance [H]
Rp= Resistance of a rotor phase winding [Ohm]
Rg- Resistance of a stator phase winding [Ohm]
= Angular rotor speed [rad.s™]
Pp . Number of motor pole-pairs [-]
T, = R—R Rotor time constant [s]
R
L .
T = ITS Stator time constant [s]
S
2
c=1-— Resultant leakage constant [-]

LsLg

Usqs Usp s isps Proo g ar€ the o, B components of the stator voltage, currents, and rotor flux

space vectors.

Eqn. 23 and Eqn. 24 can be rewritten as follows:

d¥p, dig,
= = (KLRKT)uSaf(IKT)‘PR(X*(TRKT)(D‘PRB7(KLTKT)E— Eqgn. 25
a?‘I’R[3 aliSB
= = (KLRKT)usﬁf(IKT)\PRB+(TRKT)(D\PRaf(KLTKT)—E Eqgn. 26
where: I
KLRKT = z
Rg[(1-0)Tg+ T]
1
IKT = ———— ————
[(1-0)Tg+ Tg]
Trp
TRKT = ———— =P
[(1-0)Ts+ Tg]
oL, T
KLTKT =

[(1-0)Tg+ Tg]

The numeric method of integration is based on the trapezoidal method with prediction. The
prediction is implemented using the Euler method. There are two steps of the numerical
integration. Lets define:

dx.alpha = KL R KT xu.alpha — 1 KT xpsi_ralpha— TR KT x psi_r.beta x omega_actual
dx.beta = KL R KT xu.beta—1 KT xpsi rbeta + TR KT xpsi_r.alpha x omega_actual
First step - prediction:

Using the ACIM Vector Control eTPU Function, Rev. 0

6 Freescale Semiconductor

Function Description

psi_r_pred.alpha = x.alpha[k-1] + T xdx_alpha[k-1] — KL T KT xi_alpha
psi_r_pred.beta = x.beta[k-1] + T xdx_beta[k-1] — KL T KT xi beta
where 7 is the time step of the numeric integration.
Second step - trapezoidal method:
dx_pred.alpha = KL R KT xu.alpha—1 KT xpsi r pred.alpha - TR KT x psi_r pred.beta
x omega_actual

dx _pred.beta = KL R KT xu.beta—1 KT xpsi r pred.beta + TR KT xpsi r pred.alpha x
omega_actual

x.alpha = x.alpha[k-1] + T x (dx.alpha[k-1] + dx_pred.alpha) /2
x.beta = x.beta[k-1] + T x (dx.beta[k-1] + dx_pred.beta) / 2
Final step - Flux calculation:
psi_ralpha = x.alpha— KL T KT xi.alpha
psi_rbeta =x.beta— KL T KT xi.beta
* [Establishes DQ-coordinate system
— Calculate magnetic flux modulo.

The two axis components of the rotor magnetic flux in a, 3 stationary reference frame are used
for the determination of the rotor magnetic flux magnitude #,.

Wrg = Prot+ Vhp Egn. 27
— Calculate sin(theta_field) and cos(theta_field).

Based on the rotating magnetic flux space-vector modulo and the two axis components of the
rotor magnetic flux in o, P stationary reference frame the position angle of the rotating
magnetic flux space-vector is calculated. y

. R
Sin S pyp1q = \{,_E
kd Eqn. 28
Pr
oSS pjg = _‘PR:

— Calculates Forward Park Transformation.

The Forward Park Transformation transforms a two-phase stationary system into a two-phase
rotating system.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 7

Function Description

%

Yo

Figure 3. Park Transformation

To transfer the graphical representation into mathematical language:
d| _ | cosSp;y sindp,, {a}

—SiNS g COSYpjepq| B Eqn. 29
The ACIMVC uses the Park Transformation to transform the phase currents:
i d=1i alpha xcos(theta_field) + i beta x sin(theta_field)
i_q =-i_alpha xsin(theta_field) + i _beta x cos(theta_field)
— Calculate synchronous speed.
The synchronous speed of the stator magnetic flux vector is calculated as follows:
L.i
o, = TR;;—;‘IR; +o Eqn. 30
where:
isy = Q component of the stator currents in 2-phase orthogonal rotating ref. frame
L,- Magnetizing inductance [H]
| Self-inductance of the rotor [H]
Rg= s Resistance of a rotor phase winding [Ohm]
T, = R_f; = Rotor time constant [s]
Pp= Number of pole pairs [-]
Y, = Magnetic flux modulo [Vs]
0= Angular rotor speed [rad.s™]

The ACIMVC calculates synchronous speed as follows:
omega_field = LM TR xi _q/psi r d + omega_actual
e D-coordinate and Q-coordinate PID controllers.

The PID algorithm in continuous time domain can be expressed by the following equation:

u(t)= K{e(t) + %}J‘;e(r)dr 4 TDdZ(tt)} Eqn. 31

Using the ACIM Vector Control eTPU Function, Rev. 0

8 Freescale Semiconductor

Function Description

where
u(t) — PID controller output at time ¢
e(t) — Input error at time ¢
K — PID controller gain
Ty — Integral time constant
Tp — Derivative time constant

The PID algorithm in discrete time domain can be expressed by the following equation:

u(k)= Ke(k)+ K—Yz,:e(k) +u(k—1)+ KZT[—)(e(k) —e(k—1) Eqn. 32
1

where

u(k) —PID controller output in step &

u(k-1) — PID controller output in step k-/

e(k) —Input error in step k£

e(k-1) — Input error in step k-1

T — Update period
The ACIMVC PID controller algorithm calculates the output according to the following equations:

u(k) = up(k) + u(k) + up(k)
e(k) = w(k) —m(k)
up(k) = Gp xe(k)
u(k) = uy(k-1) + Gy x e(k)
up(k) = Gp x (e(k) - e(k-1))

Where:

up(k) — Proportional portion in step k

upfk) — Integral portion in step k

up(k) — Derivative portion in step k

w(k) — Desired value in step k£

m(k) — Measured value in step k&

Gp —Proportional gain Gp=K

Gy — Integral gain G =K xT/T;

Gp —Derivative gain Gp=KxTp/T
If the derivative gain is set to 0, an internal flag that enables the calculation of derivative portion is
cleared, resulting in a shorter calculation time. Then controller becomes a PI-type controller.

The measured and desired values, as well as the gains, are applied with 24-bit precision. The
integral portion is stored with 48-bit precision. The gain range is from 0 to 256, with a precision of
0.0000305 (30.5¢-6).

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 9

Function Description

[+
1
Co— H>—>5 > >
error Saturation I_gain Integrator Saturation ~outpd
to-1,1 to limits
4’ -K- 4’.7
D_gain Derivative

Figure 4. PID Controller Structure

The ACIMVC uses the PID controller to control the D and Q coordinates of the applied motor
voltage vector, based on the error between the required and the actual D and Q phase currents:

u_d = PID controller (i_d required - i d)
u_q = PID controller (i_q required -i_q)

Decoupling Circuit.

For purposes of the rotor flux-oriented vector control, the direct-axis stator current i, (rotor
flux-producing component) and the quadrature-axis stator current ig, (torque-producing
component) must be controlled independently. However, the equations of the stator voltage
components are coupled. The direct axis component ug, also depends on ig, and the quadrature
axis component ug, also depends on ig;. The stator voltage components ug, and ug, cannot be
considered as decoupled control variables for the rotor flux and electromagnetic torque. The stator

currents igyand i,

can only be independently controlled (decoupled) if the stator voltage equations

are decoupled an(f the stator current components ig; and ig, are indirectly controlled by controlling
the terminal voltages of the induction motor.

The equations of the stator voltage components in the d-q coordinate system (Eqn. 13 and Eqn. 14)

can be reformulated and separated into two components: linear components

lin

ugy, g, and

decoupling components ~ u%c """, ug’;’w”" ‘" The equations are decoupled as follows:
lin decouple . d. . \PRdLm
Ugy = Ugy tUgy = [KRlSd"'KLElSdJ*[msKLlSq"'m‘} Eqgn. 33
lin _ decouple : d. - Ly
Usg = Usq TUsgy = |:KRlSq + KLalSq:| + [msKLlSd + Z]‘em\PRd:| Eqn. 34
where:
L2
Ky = R+ 2R, Eqn. 35
R
L2
K, = Lg—— Eqn. 36
LR

lin lin

The voltage components ugy, us,

are the outputs of the current controllers which control i, and

isq components. They are added to the decoupling voltage components ulecour'e

uleconrle Tn this

way, we can get direct and quadrature components of the terminal output voltage. This means the

voltage on the outputs of the current controllers is:

Using the ACIM Vector Control eTPU Function, Rev. 0

10

Freescale Semiconductor

Function Description

lin . d.
Ugy = KRzSdJrKL&zSd Eqn. 37

lin . d.
Ug, = KRquJrKLaqu Eqn. 38

And the decoupling components are:
decouple __ . Lm

Ugy = — (DSKLlSq+m\PRd Eqn. 39

ecouple Lm
ugq ple _ (mSKLiSdJr L—Rm‘PRd) Eqn. 40

As can be seen, the decoupling algorithm transforms the non-linear motor model to linear
equations, which can be controlled by general PI or PID controllers instead of complicated
controllers.

The ACIMVC calculates the following in order to decouple the controllers output u_d and u_g:
u d=u d— KL xomega_field xi q—LM LR TR xpsi r d
u q=u q+ KL xomega_field xi d+ LM LR xpsi r d xomega actual

Where:
ud — D-coordinate of applied motor voltage
u q — Q-coordinate of applied motor voltage
id — D-coordinate of phase currents
iq — Q-coordinate of phase currents
omega_field — Field rotation speed

omega_actual — Actual motor electrical velocity
psi r d — Rotor flux modulo
* Optionally limits D and Q components of the stator voltages into the circle.
D and Q components of the stator voltages in 2-phase orthogonal rotating reference frame can be
optionally limited into the circle. The process of limitation is described as follows:

u_dc bus actual

Lim = oo 200 GO
v = inv_mod_index
ud if —vLim<u d<vLim
u_d = vLim if u d>vLim
—vLim if u d<—vLim

u_q tmp = d(vLim)2 - (u_a’)2

u_q if —u g tmp<u gq<u_q tmp
u_q = u_q tmp if ug>u_q tmp
—u_q_tmp if ug<-ugq tmp

¢ Calculates Backward Park Transformation.

The Backward Park Transformation transforms a two-phase rotating system into a two-phase
stationary system.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 11

Function Description .
{Oc _ 088 gy —SINS gyl |d
B

The ACIMVC uses the Backward Park Transformation to transform the motor voltages:
u_alpha = u_d x cos(theta_field) - u_q x sin(theta_field)
u_beta = u_d xsin(theta_field) + u _q x cos(theta_field)
* Eliminates DC-bus ripples.

SIS pie1q COSYpjerq Eqn. 41

The ripple elimination process compensates an amplitude of the direct-a and the quadrature-3
component of the stator reference voltage vector for imperfections in the DC bus voltage. These
imperfections are eliminated by the formula shown in the following equations:

inv_mod_index - u_alpha
u_alpha = u_dc_bus_actual/?2
sign(u_alpha) - 1.0 otherwise

u_dc_bus_actual

if |inv_mod_index - u_alpha| < 3

inv_mod_index - u_beta
u_beta = u_dc_bus_actual /2

sign(u_beta) - 1.0 otherwise

u_dc_bus_actual
2

if |inv_mod_index - u_beta | <

where the y = sign (x) function is defined as follows:

. { 1.0 if x>0
-1.0 otherwise

Where:
u_alpha is alpha component of applied motor voltage, in [V].
u_beta is beta component of applied motor voltage, in [V].
u_dc_bus_actual is actual measured value of the DC-bus voltage, in [V].
inv_mod_index is Inverse Modulation Index; depends on the selected Modulation Technique,
in [-].
Figure 5 and Figure 6 depict ripple elimination functionality. Due to variations made in the actual

DC-bus voltage, the ripple elimination algorithm influences the duty cycles that are generated
using the standard space vector modulation technique.

15

10

voltage

——— U_dC_bus

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5. Measured Voltage on the DC-Bus

Using the ACIM Vector Control eTPU Function, Rev. 0

12 Freescale Semiconductor

Function Description

voltage

0.5

Phase A

Phase B
Phase C

0 \ \
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 6. Standard Space Vector Modulation with Elimination of the DC_bus Ripple
The ACIMVC function update, in which all vector control calculations are performed, can be executed
periodically, or by another process:
* Master mode

The ACIMVC update is executed periodically with a given period.
e Slave mode

The ACIMVC update is executed by the analog sensing for AC motors (ASAC) eTPU function,
other eTPU function, or by the CPU.

eTPU or CPU eTPU or CPU
Request Request

' .
Slave Mode

Start Offset | Period | Period
[[

>»la >l 5,
> i > S >

Master Mode

Figure 7. ACIMVC updates in Slave Mode and Master Mode

A

The ACIMVC update is divided in three consecutive threads. It enables to interrupt the ACIMVC
calculations by another channel activity, and it keeps the latency caused by ACIMVC low.

4.1 Interrupts

The ACIMVC function generates an interrupt service request to the CPU at the end of every n-th update.
The number of updates, after which an interrupt service request is generated, is a function parameter.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 13

C Level API for Function

4.2 Performance

Like all eTPU functions, the ACIMVC function performance in an application is, to some extent,
dependent upon the service time (latency) of other active eTPU channels. This is due to the operational
nature of the scheduler.

The influence of the ACIMVC function on the overall eTPU performance can be expressed by the
following parameter:

Maximum eTPU busy-time per one update
This value, compared to the update period value, determines the proportional load on the eTPU
engine caused by ACIMVC function.

Longest thread time
This value determines the longest latency which can be caused by ACIMVC function.

Table 1 lists the maximum eTPU busy-times per update period in eTPU cycles that depend on the
ACIMVC mode, and ripple elimination configuration.

Table 1. Maximum eTPU Busy-Times

Maximum eTPU Busy-Time
per One Update Period
(eTPU Cycles)

Mode, Ripple Elimination, and
Controller Type

Longest Thread Time
(eTPU Cycles)

Master mode, Circle limitation OFF 1304 584
Master mode, Circle limitation OFF 1550 584
Slave mode, Circle limitation OFF 1292 584
Slave mode, Circle limitation OFF 1538 584

On MPC5500 devices, the eTPU module clock is equal to the CPU clock. On MCF523x devices, it’s equal
to the peripheral clock, which is a half of the CPU clock,. For example, on a 132-MHz MPC5554, the
eTPU module clock is 132 MHz, and one eTPU cycle takes 7.58 ns. On a 150-MHz MCF5235, the eTPU
module clock is only 75 MHz and one eTPU cycle takes 13.33 ns.

The performance is influenced by the compiler efficiency. The above numbers, measured on the code
compiled by eTPU compiler version 1.0.7, are given for guidance only and are subject to change. For
up-to-date information, refer to the information provided in the particular eTPU function set release
available from Freescale.

5 C Level API for Function

The following routines provide easy access for the application developer to the ACIMVC function. Use of
these functions eliminates the need to directly control the eTPU registers.

There are 18 functions added to the ACIMVC application programming interface (API). The routines can
be found in the etpu_acimvc.hand etpu_acimvc. c files, which should be linked with the top level
development file(s).

Figure 8 shows the ACIMVC API state flow and lists API functions that can be used in each of its states.

Using the ACIM Vector Control eTPU Function, Rev. 0

14 Freescale Semiconductor

fs_etpu_acimvc _init(...)

|

é_ etpu_acimvc_update(...) \

fs_etpu_acimvc_set configuration(...)
fs_etpu_acimvc_set i d desired(...)
fs_etpu_acimvc_set i _q_desired(...)
fs_etpu_acimvc_set_i_dq_desired(...)
fs_etpu_acimvc_set u_dc bus_measured(...)
fs_etpu_acimvc_set i abc(...)
fs_etpu_acimvc_get i _abc(...)
fs_etpu_acimvc_get i aby...)
fs_etpu_acimvc_get_i_dq(...)
fs_etpu_acimvc_get i_dq_desired(...)
fs_etpu_acimvc_get u_dq(...)
fs_etpu_acimvc_get u_ab(...)
fs_etpu_acimvc_get saturation_flag_d(...)
fs_etpu_acimvc_get_saturation_flag_q(...)
fs_etpu_acimvc_set_integral_portion_d(...)

fs_etpu_acimvc_set_integral_portion_q(...)

Figure 8. ACIMVC API State Flow

All ACIMVC API routines will be described in order and are listed below:

e Initialization functions:

int32_t fs_etpu acimvc_init(uint8_t channel,

uint8_t priority,
uint8_t mode,

uint8_t circle_limitation_config,

uint24_t period,
uint24_t start offset,
uint24_t services_per_irq,
uint8_t SC_chan,
acimvc_motor_params_t* p_motor_paranms,
acimvc_pid params_t* p _pid d_params,
acimvc_pid_params_t* p _pid g params,
int24_t inv_mod_index,
uint8_t output_chan,
uintlé_t output offset,

Using the ACIM Vector Control eTPU Function, Rev. 0

C Level API for Function

Freescale Semiconductor

15

C Level API for Function

uint8_t link_chan)

* Change operation functions:

int32_t fs_etpu acimvc_set configuration(uint8 t channel,
uint8_t configuration)

int32_t fs_etpu_acimvc_update(uint8_t channel)

int32_t fs_etpu acimvc_set i_d desired(uint8_t channel,
fract24 t i_d desired)

int32_t fs _etpu acimvc _set i_q desired(uint8 t channel,
fract24 t i_q desired)

int32_t fs_etpu acimvc_set i_dq desired(uint8_t channel,
acimvc _dgq t * p_i_dg desired)

int32_t fs _etpu acimvc_set u dc _bus measured(uint8 t channel,
ufract24 t u_dc bus measured)

int32_t fs_etpu acimvc_set _i_abc(uint8_t channel,
acimvc_abc t * p_i_abc)

int32_t fs_etpu acimvc_set_integral portion d(uint8_t channel,
fract24 t i_kl1)

int32_t fs_etpu _acimvc_set integral_portion_g(uint8_t channel,
fract24 t i_k1)

* Value return functions:
int32_t fs_etpu acimvc_get i_abc(uint8_t channel,

acimvc_abc t * p_i_abc)

int32_t fs_etpu _acimvc_get i_ab(uint8_t channel,
acimvc_ab t * p_i_ab)

int32_t fs_etpu _acimvc_get i_dq{uint8_t channel,
acimvc dq t * p_i_dq)

int32_t fs_etpu acimvc_get i_dq desired(uint8_t channel,
acimvc _dgq t * p_i_dg desired)

Using the ACIM Vector Control eTPU Function, Rev. 0

16 Freescale Semiconductor

5.1

5.1.1

C Level API for Function

int32_t fs_etpu acimvc _get u dq(uint8_t channel,
acimvc dg t * p_u dq)

int32_t fs_etpu acimvc_get u ab(uint8_t channel,

acimvc_ab t * p u ab)
uint8_t fs etpu_acimvc _get saturation flag d(uint8_t channel)
uint8_t fs _etpu_acimvc _get saturation flag q(uint8_t channel)
Initialization Function

int32_t fs_etpu_acimvc_init(...)

This routine is used to initialize the eTPU channel for the ACIMVC function. It has these parameters:

channel (uint8 t)—The ACIMVC channel number; should be assigned a value of 0-31 for
ETPU_A, and 64-95 for ETPU_B.

priority (uint8 t)—The priority to assign to the ACIMVC function; should be assigned one of
these values:

— FS ETPU PRIORITY_ HIGH

— FS _ETPU PRIORITY MIDDLE

— FS _ETPU PRIORITY LOW

mode (uint8_t)—The function mode; should be assigned one of these values:
— FS ETPU ACIMVC MASTER

— FS ETPU ACIMVC SLAVE

circle_limitation_config (uint8 t)—The required configuration of circle limitation; should be
assigned one of these values:

— FS_ETPU ACIMVC CIRCLE LIMITATION OFF,
— FS_ETPU ACIMVC_CIRCLE LIMITATION ON

period (uint24 t)—The update period, as a number of TCR1 clocks. This parameter applies in
the master mode only (mode=FS_ETPU ACIMVC MASTER).

start_offset (uint24 t)—Used to synchronize various eTPU functions that generate a signal. The
first ACIMVC update starts the start offset TCR1 clocks after initialization. This parameter
applies in the master mode only (mode=FS_ETPU_ACIMVC_MASTER).

services_per_irq (uint24_t)—Defines the number of updates after which an interrupt service
request is generated to the CPU.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 17

|
4

'
A

C Level API for Function

SC_chan (uint8_t)—The number of a channel the SC function is assigned to. The ACIMVC
reads the actual speed from SC. This parameter should be assigned a value of 0-31 for ETPU_A,

and 64-95 for ETPU_B.

p_motor_params (acimvc_motor_params_t*)—The pointer to a acimvc_motor params_t
structure of motor constants. The acimvc_motor params_t structure is defined in

etpu_acimvc.h:
typedef struct {

fract24 t KL T KT; /*
fract24 t KL_R KT; /*
fract24 t | KT; /*
fract24 t TR KT; /*
fract24 t T; /*
fract24 t LM TR; /*
fract24 t LM LR TR;/*
fract24 t LM LR; /*
fract24 t KL; /*

} acimvc_motor_params_t;

motor
motor
motor
motor
motor
motor
motor
motor
motor

dependent
dependent
dependent
dependent
dependent
dependent
dependent
dependent
dependent

constant
constant
constant
constant
constant
constant
constant
constant
constant

© 0 ~NO O~ WDN P

in
in
in
in
in
in
in
in
in

fract.
fract.
fract.
fract.
fract.
fract.
fract.
fract.
fract.

format (3.
format (1.
format (1.
format (1.
format (1.
format (3.
format (1.
format (1.
format (3.

The following motor parameters are essential for motor dependent constants setting:
Self-inductance of the stator [H]
Self-inductance of the rotor [H]
Magnetizing inductance [H]

Resistance of a rotor phase winding [Ohm]

Ls

Lr

Lm

Rr

Rs

pp

Tr=Lr/Rr

Ts=Ls/Rs

sigma = 1-(Lm*Lm/Ls*Lr)

omega_range[rad/s])

Resistance of a stator phase winding [Ohm]

Number of motor pole-pairs [-]

Rotor time constant [s]
Stator time constant [s]

Resultant leakage constant [-]

The motor dependent constants are calculated and scaled to the nominal range as follows:

— KL T KTI[-] = ((sigma[-] ¥ Lm[H] ¥ Ts[s]) / (Tr[s] + Ts[s] ¥ (1 - sigma[-]))) ¥
phase current range[A]/rotor flux range[Vs]
KL T KT[fract 3.21] = 0x200000 ¥ KL. T KT[-]

— KL R KT[-] = ((Lm[H]/Rs[Ohm]) / (Tr[s] + Ts[s] ¥ (1 - sigma[-]))) ¥ dc_bus_voltage[V]/
(pp[-] ¥ rotor_flux_range[Vs] ¥ omega range[rad/s])
KL R KT[fract 1.23] = 0x800000 ¥ KL R _KTI[-]

— L KT[-]=(1/(Tr[s] + Ts[s] ¥ (1 - sigma[-]))) ¥ rotor_flux_range[Vs]/ (pp[-] ¥
rotor_flux range[Vs] ¥ omega range[rad/s])
I KTJ[fract 1.23] = 0x800000 ¥ I KT[-]

— TR_KTI[-] = ((pp[-] ¥ Lr[H] / Rr[Ohm]) / (Tr[s] + Ts[s] ¥ (1 - sigma[-]))) ¥
rotor flux range[Vs] ¥ omega range[rad/s]/ (pp[-] ¥ rotor flux range[Vs] ¥

TR_KT[fract 1.23] = 0x800000 ¥ TR_KT][-]

Using the ACIM Vector Control eTPU Function, Rev. 0

21) */
23) */
23) */
23) */
23) */
21) */
23) */
23) */
21) */

18

Freescale Semiconductor

C Level API for Function

— T[-]1= (pp[-] ¥ rotor_flux range[Vs] ¥ omega range[rad/s]) / (PWM_freq[hz] ¥
rotor_flux range[Vs]
T[fract 1.23] = 0x800000 ¥ T[-]

— LM _TR[-]=Lm[H]/ (Tr[s] ¥ pp[-]) ¥ phase current range[A]/ (dc_bus voltage[V] ¥
rotor_flux range[Vs])
LM_TR[fract 3.21] = 0x200000 ¥ LM_TR[-]

— LM_LR TR[-]=Lm[H]/ (Lr[H] ¥ Tr[s]) ¥ rotor flux range[Vs] /(2 ¥ dc_bus_voltage[V])
LM LR TR[fract 1.23] =0x800000 ¥ LM_LR TR[-]

— LM _LR[-] =pp[-] ¥ Lm[H] / Lr[H] ¥ rotor flux range[Vs] ¥ omega range[rad/s]/ (2 ¥
dc_bus_voltage[V])
LM_LR([fract 1.23] = 0x800000 ¥ LM _LR[-]

— KL[-]=pp[-] ¥ (Ls[H] - Lm[H] ¥ Lm[H] / Lr[H]) ¥ phase current range[A] ¥
omega range[rad/s] /(2 ¥ dc_bus voltage[V])
KL[fract 3.21] = 0x200000 ¥ KL[-]

* p_pid_d_params (acimvc_pid_params_t*)xThe pointer to a acimvc_pid_params_t structure of
D-coordinate PID controller parameters. The acimve pid params_t structure is defined in
etpu_acimvc.h:

typedef struct {
fract24 t P_gain;
fract24 t 1_gain;
fract24 t D _gain;
intl6_t positive limit;
intl6_t negative limit;
} acimvc_pid _params_t;
Where:
— P_gain (fract24 _t) is the proportional gain whose value must be in the 24-bit signed fractional
format 9.15. This means in the range of (-256, 256).
0x008000 corresponds to 1.0
0x000001 corresponds to 0.0000305 (30.5e-6)
OX7FFFFF corresponds to 255.9999695
— I_gain (fract24 _t) is the integral gain whose value must be in the 24-bit signed fractional
format 9.15. This means in the range of (-256, 256).
— D_gain (fract24 _t) is the derivative gain whose value must be in the 24-bit signed fractional
format 9.15. This means in the range of (-256, 256). To switch off calculation of derivative
portion, set this parameter to zero.

— positive_limit (int16_t) is the positive output limit whose value must be in the 16-bit signed
fractional format 1.15. This means in the range of (-1, 1).

— negative limit (int16_t) is the negative output limit whose value must be in the 16-bit signed
fractional format 1.15. This means in the range of (-1, 1).

* p_pid_q_params (acimvc_pid params_t*)—The pointer to a acimvc pid params_t structure
of Q-coordinate PID controller parameters.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 19

|
y

'
A

C Level API for Function

* inv_mod_index (int24_t)—Defines the Inverse Modulation Index. Inverse Modulation Index is
dependent on the type of modulation technique being used by the PWMMAC. This parameter
should be assigned one of these values:

— FS _ ETPU_ACIMVC_INVMODINDEX SINE
— FS _ ETPU_ACIMVC_INVMODINDEX SIN3H
— FS _ ETPU_ACIMVC_INVMODINDEX SVM

* output_chan (uint8 t)—ACIMVC writes outputs to a recipient function’s input parameters. This
is the recipient function channel number. 0-31 for ETPU_A and 64-95 for ETPU_B.

* output_offset (uint16_t)—ACIMVC writes outputs to a recipient function’s input parameters.
This is the first input parameter offset of the recipient function. Function parameter offsets are
defined in etpu_<func> auto.h file.

* link_chan (uint8 t)—The number of the channel that receives a link after ACIMVC updates
output. Usually ACIMVC updates PWMMAC inputs, and that is why it should be a PWMMAC
channel. 0-31 for ETPU_A and 64-95 for ETPU_B.

5.2 Change Operation Functions

5.2.1 int32_tfs_etpu_acimvc_set_configuration(uint8_t channel,
uint8_t configuration)

This function changes the ACIMVC configuration. It has these parameters:

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

» configuration (uint8 t)—The required configuration of ACIMVC; should be assigned one of
these values:

— FS_ETPU ACIMVC PID OFF (DQ PID controllers are disabled)
— FS _ETPU_ACIMVC PID ON (DQ PID controllers are enabled)

5.2.2 int32_t fs_etpu_acimvc_update(uint8_t channel)
This function executes the ACIMVC update. It has this parameter:

* channel (uint8_t)—T ACIMVC channel number; must be assigned the same value as the channel
parameter of the initialization function was assigned.

5.2.3 int32_tfs_etpu_acimvc_set_i_d_desired(uint8_t channel,
fract24_t i_d_desired)

This function changes the value of D-component of desired phase currents in 2-phase orthogonal rotating
reference frame. It has these parameters:

Using the ACIM Vector Control eTPU Function, Rev. 0

20 Freescale Semiconductor

C Level API for Function

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* i_d_desired (fract24_t)—D-component of desired phase currents in 2-phase orthogonal rotating
reference frame, in range MIN24 to MAX?24.

5.2.4 int32_tfs_etpu_acimvc_set_i_q_desired(uint8_t channel,
fract24_t i_q_desired)

This function changes the value of Q-component of desired phase currents in 2-phase orthogonal rotating

reference frame. It has these parameters:

* channel (uint8 t)}—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* i_q _desired (fract24_t)—Q-component of desired phase currents in 2-phase orthogonal rotating
reference frame, in range MIN24 to MAX24.

5.2.5 int32_tfs_etpu_acimvc_set_i_dq_desired(uint8_t channel,
acimvc_dq_t * p_i_dq_desired)

This function changes the value of desired phase currents in 2-phase orthogonal rotating reference frame.

It has these parameters:

* channel (uint8 t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

e p_i_dq_desired (acimve_dq_t *)—Pointer to structure of desired phase currents in 2-phase
orthogonal rotating reference frame, in range MIN24 to MAX24.

5.2.6 int32_tfs_etpu_acimvc_set _u_dc_bus_measured(uint8_t
channel, ufract24_t u_dc_bus_measured)

This function sets the value of actual DC-bus voltage, as a portion of the AD convertor range. It can be

used in case a DMA transfer of the value from AD converter to eTPU is not used and has these parameters:

* channel (uint8_t)—The ACIMVC channel number.; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* u_dc _bus measured (ufract24 t)—The actual value of DC-bus voltage, as an unsigned 24 bit
portion of the AD converter range.

5.2.7 int32_t fs_etpu_acimvc_set_i_abc(uint8_t channel,
acimvc_abc_t * p_i_abc)

This function sets the values of i_abc - input phase currents in 3-phase stationary reference frame. It has

these parameters:

* channel (uint8 t)}—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 21

C Level API for Function

* p_i_abc (acimve_abce_t*)—Pointer to structure of phase currents in 3-phase stationary reference
frame.

5.2.8 int32_t fs_etpu_acimvc_set_integral_portion_d(uint8_t
channel, fract24_t i_k1)

This function sets the D component PID controller integral portion (usually used to set the integral portion
to zero). It has these parameters:

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* i k1 (fract24_t)—The integral portion value in 24-bit signed fractional format 1.23, range (-1,1).

5.2.9 int32_t fs_etpu_acimvc_set_integral_portion_q(uint8_t
channel, fract24_t i_k1)

This function sets the Q component PID controller integral portion (usually used to set the integral portion
to zero). It has these parameters:

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* i _kl1 (fract24_t)—The integral portion value in 24-bit signed fractional format 1.23, range (-1,1).

5.3 Value Return Function

5.3.1 int32_t fs_etpu_acimvc_get_i_abc(uint8_t channel,
acimvc_abc_t * p_i_abc)

This function gets the values of i_abc - input phase currents in 3-phase stationary reference frame. It has

these parameters:

* channel (uint8 t)}—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* p_i_abc (acimvc_abc_t*)—Pointer to structure of phase currents in 3-phase stationary reference
frame.

5.3.2 int32_t fs_etpu_acimvc_get_i_ab(uint8_t channel,
acimvc_ab_t * p_i_ab)

This function gets the values of i_ab - phase currents in 2-phase orthogonal stationary reference frame. It

has these parameters:

* channel (uint8 t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

Using the ACIM Vector Control eTPU Function, Rev. 0

22 Freescale Semiconductor

C Level API for Function

e p_i_ab (acimve_ab_t*)—Pointer to structure of phase currents in 2-phase orthogonal stationary
reference frame.

5.3.3 int32_t fs_etpu_acimvc_get_i_dq(uint8_t channel,
acimvc_dq_t * p_i_dq)

This function gets the values of i_dq - phase currents in 2-phase orthogonal rotating reference frame. It has

these parameters:

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* p_i_dq (acimve_dq_t*)—Pointer to structure of phase currents in 2-phase orthogonal rotating
reference frame.

5.3.4 int32_tfs_etpu_acimvc_get_i_dq_desired(uint8_t channel,
acimvc_dq_t * p_i_dq_desired)

This function gets the values of i_dq_desired - desired phase currents in 2-phase orthogonal rotating

reference frame. It has these parameters:

* channel (uint8 t) —The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* p_i_dq _desired (acimve_dq_t*)—Pointer to return structure of phase currents in 2-phase
orthogonal rotating reference frame.

5.3.5 int32_tfs_etpu_acimvc_get_u_dq(uint8_t channel,
acimvc_dq_t * p_u_dq)

This function gets the values of u_dq - stator voltages in 2-phase orthogonal rotating reference frame. It

has these parameters:

* channel (uint8 t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* p_u_dq (acimve_dq_t*)—Pointer to structure of of stator voltages in 2-phase orthogonal
rotating reference frame.

5.3.6 int32_t fs_etpu_acimvc_get_u_ab(uint8_t channel,
acimvc_ab_t * p_u_ab)

This function gets the values of u_ab - stator voltages in 2-phase orthogonal stationary reference frame. It

has these parameters:

* channel (uint8 t)}—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

* p_u_ab (acimve_ab_t*)—Pointer to structure of of stator voltages in 2-phase orthogonal
stationary reference frame.

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 23

Example Use of Function

5.3.7 uint8_t fs_etpu_acimvc_get_saturation_flag_d(uint8_t
channel)

This function returns the D component PID controller saturation flags.It has this parameter:

* channel (uint8_t) —The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

The returned value can be:
— FS_ETPU_ACIMVC_SATURATION NO (0) ... no saturation
— FS _ETPU ACIMVC _SATURATION POS (1) ... saturation to positive limit
— FS_ETPU _ACIMVC _SATURATION NEG (2) ... saturation to negative limit

5.3.8 uint8_t fs_etpu_acimvc_get_saturation_flag_q(uint8_t
channel)

This function returns the Q component PID controller saturation flags. It has this parameter:

* channel (uint8_t)—The ACIMVC channel number; must be assigned the same value as the
channel parameter of the initialization function was assigned.

The returned value can be:
— FS_ETPU_ACIMVC_SATURATION NO (0) ... no saturation
— FS _ETPU ACIMVC _SATURATION POS (1) ... saturation to positive limit
— FS_ETPU ACIMVC _SATURATION NEG (2) ... saturation to negative limit

6 Example Use of Function

6.1 Demo Applications

The use of the ACIMVC eTPU function is demonstrated in the following application note:
* “AC Induction Motor Vector Control, Driven by eTPU on MPC5500,” AN3001

For a detailed description of the demo application, refer to the above application note.

6.1.1 Function Calls

The ACIMVC function is configured to the slave mode and calculates current control loop on a link from
ASAC function. The desired value of Q-component of phase currents in 2-phase orthogonal rotating
reference frame (i_q required) is provided by the SC function. The desired value of D-component of phase
currents in 2-phase orthogonal rotating reference frame (i_d required) is set to 0. The circle limitation is
on. The controller output points to a PWMMAC input, so that it controls the duty-cycle of PWM phases.
/***

* Parameters

***/

Using the ACIM Vector Control eTPU Function, Rev. 0

24 Freescale Semiconductor

Example Use of Function

int32_t speed_range_rpm = 4000;

int32 t dc_bus voltage range mv = 618000;
int32_t phase_current_range ma = 8000;
int32 t rotor flux range mVs = 1000;
uint8 t ACIM pole pairs = 2;

int32 t ACIM resist stator mOhm = 32250;
int32 t ACIM resist rotor mOhm = 31170;
int32 t ACIM Lm uH = 537800;

int32 t ACIM Ls leak uH = 28100;

int32_t ACIM Lr leak uH = 65500;

int32 t ACIM Ke mv_per krpm = 150000;
int32 t ACIMVC D PID gain permil = 1000;
int32 t ACIMVC D I time const _us = 100000;
int32 t ACIMVC Q PID gain permil = 2000;
int32 t ACIMVC Q I time const us = 1000;
uint8_t ACIMVC_channel = 6;

uint8 t SC_channel = 5;

uint8 t PWM master channel = 7;

int32 t PWM freq hz = 20000;

uint8 t QD phaseA channel = 1;

int24 t QD pc per rev = 4096;

/***

*

*

*

4) Initialize ACIM Vector Control Loop

**/

/***

*

4.1) Define D-Current Controller PID Parameters

ER R R R Sk Ik Rk S R Sk kR kS ko

*

*

*

*

The P-gain and I-gain are calculated from the controller gain and
integral time constant, given by parameters, and transformed to 24-bit
fractional format 9.15:

P gain = PID gain permil/1000 * 0x008000;

I gain = PID gain permil/1000 * 1/update freqg hz *

* 1000000/I time const us * 0x008000;

The D-gain is set to zero in order to have a PI-type controller.
The positive and negative limits, which are set in 16-bit fractional
format (1.15), can be adjusted in order to limit the speed controller
output range, and also the integral portion range.

**/

acimve pid d params.P gain = ACIMVC D PID gain permil*0x001000/125;

acimve_pid d params.I_gain = 0x008000*1000/PWM_freq hz*ACIMVC_D_PID gain permil
/ACIMVC D I time const us;

acimvc _pid d params.D gain = 0;

acimvc pid d params.positive limit = Ox7FFF;

0x8000;

acimvc pid d params.negative limit

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor

25

A 4
4\

Example Use of Function

/***

* 4.2) Define Q-Current Controller PID Parameters
**/
acimve pid g params.P gain = ACIMVC _Q PID gain permil*0x001000/125;
acimve_pid g params.I_gain = 0x008000*1000/PWM_freq hz*ACIMVC_Q PID gain permil
/ACIMVC Q I time const us;

acimvc_pid g params.D gain = 0;
acimvc pid g params.positive limit = Ox7FFF;
acimvc pid g params.negative limit = 0x8000;

/***

* 4.3) Define Motor Parameters

**/
/* omega range in mrad/s */
omega_range rad s = 2*3.1415927f*speed range rpm/60;
/* Motor self-inductance of the stator in uH */Ls mH = (ACIM Lm uH +
ACIM Ls leak uH)/1000.0f;

/* Motor self-inductance of the rotor in uH */
Lr mH = (ACIM Lm uH + ACIM Lr leak uH)/1000.0f;

/* Motor stator time constant in ms */
Ts_ s = Ls mH/ACIM resist stator mOhm;

/* Motor rotor time constant in ms */
Tr s = Lr mH/ACIM resist rotor mOhm;

/* Motor resultant leakage constant */
sigma = (1.0f - (ACIM Lm uH/1000.0f)* (ACIM Lm uH/1000.0f)/(Ls mH*Lr mH)) ;

/* Rotor magnetic flux calculation constants */

dx_range = rotor flux range mVs/1000.0f * ACIM pole pairs * omega range rad_s;
i kt s =1.0£/(Tr s + Ts_s*(1.0f-sigma));
acimvc motor params.KL T KT = (int32 t) ((float)0x200000*sigma*ACIM Lm uH*Ts s*
i kt s*phase current range mA/(rotor flux range mVs*le6)) ;
acimvc motor params.KL R KT = (int32 t) ((float)0x800000*i kt s*ACIM Lm uH*
dc_bus voltage range mV/ (ACIM resist stator mOhm*dx rangex*le6)) ;
acimvc_motor params.I_ KT = (int32_t) ((float)0x800000*i_kt s*
rotor flux range mVs/ (dx_ range*1le3)) ;
acimvc_motor params.TR_KT = (int32 t) ((float)O0x800000*i kt s*ACIM pole pairs*Tr s*

omega range rad_s*rotor flux range mVs/(dx range*le3));
acimvc motor params.T = (int32 t) ((float)0x800000*dx range*le3/(PWM_freqg hz*
rotor flux range mVs)) ;

/* D-Q system establishment constants */

acimvc motor params.LM TR = (int32 t) ((float)0x200000*ACIM Lm uH*
phase current range mA/(Tr s*ACIM pole pairs*rotor flux range mVs*
dc_bus_voltage range mV*le3));

Using the ACIM Vector Control eTPU Function, Rev. 0

26 Freescale Semiconductor

Summary and Conclusions

/* ACIM decoupling constants */
acimvc motor params.LM LR TR= (int32 t) ((float)0x800000*ACIM Lm uH*
rotor flux range mVs/(Lr mH*Tr s*dc bus voltage range mvV*2e3)) ;
acimvc motor params.LM LR = (int32 t) ((float) 0x800000*ACIM pole pairs*ACIM Lm uH*
rotor flux range mVs*omega range rad_ s/ (Lr mH*dc bus voltage range mv*2e3));
acimvc _motor params.KL = (int32 t) ((float) 0x200000*ACIM pole pairs*
((float)Ls mH - ((float)ACIM Lm uH*ACIM Lm uH)/(Lr mH*1le6))*
phase current range mA*omega range rad s/ (dc_bus voltage range mvV*2e3)) ;

/***
* 4 .4) Initialize ACIMVC channel
**/

err code = fs etpu acimvc init(
ACIMVC channel, /* channel */
FS_ETPU PRIORITY LOW,/* priority */
FS ETPU ACIMVC SLAVE,/* mode */
FS_ETPU ACIMVC CIRCLE LIMITATION ON, /* circle limitation config */
0, /* period */
0, /* start offset */
0, /* services per irqg */
SC_channel, /* SC chan */
&acimvc motor params, /* p motor params */
&acimve pid d params, /* p pid d params */
&acimve pid g params, /* p pid g params */
FS_ETPU ACIMVC INVMODINDEX SINE, /* inv mod index */
PWM master channel, /* output chan */
FS _ETPU PWMMAC INPUTS OFFSET,/* output offset */
0/*PWM_master_ channel*//* link chan */
)
if (err code != 0)
return (err_ code);

7 Summary and Conclusions

This application note provides the user with a description of the ACIMVC eTPU function. The simple C
interface routines to the ACIMVC eTPU function enable easy implementation of the ACIMVC in
applications. The demo application is targeted at the MPC5500 family of devices, but it can easily be
reused with any device that has an eTPU.

7.1 References

1. “The Essential of Enhanced Time Processing Unit,” AN2353
2. “General C Functions for the eTPU,” AN2864
3. “Using the AC Motor Control eTPU Function Set (set4),” AN2968

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 27

Summary and Conclusions

N oWk

Enhanced Time Processing Unit Reference Manual, ETPURM

eTPU Graphical Configuration Tool, http://www.freescale.com/etpu, ETPUGCT
“Using the AC Motor Control PWM eTPU Functions,” AN2969

“AC Induction Motor Vector Control, Driven by eTPU on MPC5500,” AN3001

Using the ACIM Vector Control eTPU Function, Rev. 0

28

Freescale Semiconductor

Summary and Conclusions

Using the ACIM Vector Control eTPU Function, Rev. 0

Freescale Semiconductor 29

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property

of their respective owners.© Freescale Semiconductor, Inc. 2006. All rights
reserved.

AN2973
Rev. 0
04/2006

	Using the ACIM Vector Control eTPU Function
	1 Introduction
	2 Theory
	2.1 Mathematical Model of ACIM Control

	3 Function Overview
	4 Function Description
	4.1 Interrupts
	4.2 Performance

	5 C Level API for Function
	5.1 Initialization Function
	5.1.1 int32_t fs_etpu_acimvc_init(...)

	5.2 Change Operation Functions
	5.2.1 int32_t fs_etpu_acimvc_set_configuration(uint8_t channel, uint8_t configuration)
	5.2.2 int32_t fs_etpu_acimvc_update(uint8_t channel)
	5.2.3 int32_t fs_etpu_acimvc_set_i_d_desired(uint8_t channel, fract24_t i_d_desired)
	5.2.4 int32_t fs_etpu_acimvc_set_i_q_desired(uint8_t channel, fract24_t i_q_desired)
	5.2.5 int32_t fs_etpu_acimvc_set_i_dq_desired(uint8_t channel, acimvc_dq_t * p_i_dq_desired)
	5.2.6 int32_t fs_etpu_acimvc_set_u_dc_bus_measured(uint8_t channel, ufract24_t u_dc_bus_measured)
	5.2.7 int32_t fs_etpu_acimvc_set_i_abc(uint8_t channel, acimvc_abc_t * p_i_abc)
	5.2.8 int32_t fs_etpu_acimvc_set_integral_portion_d(uint8_t channel, fract24_t i_k1)
	5.2.9 int32_t fs_etpu_acimvc_set_integral_portion_q(uint8_t channel, fract24_t i_k1)

	5.3 Value Return Function
	5.3.1 int32_t fs_etpu_acimvc_get_i_abc(uint8_t channel, acimvc_abc_t * p_i_abc)
	5.3.2 int32_t fs_etpu_acimvc_get_i_ab(uint8_t channel, acimvc_ab_t * p_i_ab)
	5.3.3 int32_t fs_etpu_acimvc_get_i_dq(uint8_t channel, acimvc_dq_t * p_i_dq)
	5.3.4 int32_t fs_etpu_acimvc_get_i_dq_desired(uint8_t channel, acimvc_dq_t * p_i_dq_desired)
	5.3.5 int32_t fs_etpu_acimvc_get_u_dq(uint8_t channel, acimvc_dq_t * p_u_dq)
	5.3.6 int32_t fs_etpu_acimvc_get_u_ab(uint8_t channel, acimvc_ab_t * p_u_ab)
	5.3.7 uint8_t fs_etpu_acimvc_get_saturation_flag_d(uint8_t channel)
	5.3.8 uint8_t fs_etpu_acimvc_get_saturation_flag_q(uint8_t channel)

	6 Example Use of Function
	6.1 Demo Applications
	6.1.1 Function Calls

	7 Summary and Conclusions
	7.1 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

